发布时间:2025年2月7日 已帮助: 146 人 来源:长春秦学教育
摘要:对于中小学学生来讲,汉字是语言学习的基础,是引导学生顺利展开阅读的奠基石,在人造丝的意思一文中由51培训网小编慵吋于2019/3/8为大家详细进行整理,包括人造丝的意思、近义词、反义词及发音等信息,请跟着小编一起来学习吧。
读音:rén zào sī
注音:ㄖㄣˊ ㄗㄠˋ ㄙ
基本解释: 人造纤维的一种
相关字词典推荐:
人造黑洞的意思
读音:
注音:
基本解释: 基本解释 人造黑洞-概述 “人造黑洞”的设想最早提出于20世纪80年代,由加拿大不列颠哥伦比亚大学的威廉·昂鲁教授提出,他认为声波在流体中的表现与光在黑洞中的表现非常相似,如果使流体的速度超过声速,那么就可以在该流体中建立一个人造黑洞。2009年10月,两名中国科学家首次制造出可以吸收周围光线的人造电磁“黑洞”。这个黑洞目前在微波频率下工作,或许不久后它就能够吸收可见光,一种把太阳能转化为电能的全新方法可能因此产生。当2007年世界最强大的粒子加速器诞生时,科学家通常一秒钟就可以生产出一个黑洞来,这一潜在的黑洞加工厂一时引起全球恐慌,媒体纷纷报道人造黑洞会吞噬地球。致力于保卫人类免受人们周围各种威胁伤害的非赢利性机构——救生艇基金会声明,人造黑洞会威胁地球上的所有生命,因此,它建设到处建立自谋生活的群体。美国加州大学物理学教授史蒂夫·吉汀斯是这方面的专家,他对人造黑洞进行了认真分析,他认为人造黑洞毁灭地球的理论纯粹是小说和电影里的虚构,真正的粒子碰撞制造出的人造黑洞不可能吞噬地球。 人造黑洞-黑洞工厂 20世纪60年代单阶段的粒子加速器 粒子加速器,也被称之为大型强子对撞机(LHC)。位于法国和瑞士交界处的世界上最大的粒子物理研究中心欧洲核子研究中心(CERN)已经开始在一个将近17英里长的圆形隧道里面建造这个被人们称之为世界最大的“黑洞工厂”的装置。2008年6月,吉汀斯教授在报告中称,欧洲的科学家很快就会利用粒子加速器制造出人造黑洞。 2008年7月,欧洲核子研究中心的蒙加诺教授与吉汀斯教授的科研小组进行合作正在建设建设世界上最大的粒子加速器(对撞机),而这个粒子加速器(大型强子对撞机)是世界上最先进的粒子研究工具,项目耗资80亿美元,历时14年之久,汇集了世界各地最著名的物理学家。科学家们将在实验中撞击质子,模拟宇宙大爆炸后一万亿分之一秒内的能量和条件,接着细致分析撞击产生的残骸,用以探求物质本质的线索和自然中新的力量和平衡。 人造黑洞-争议话题 科学家表示,假如大型强子对撞机(LHC)在生产出了黑洞,那么它就证明了宇宙确实存在除空间和时间以外的维度。吉汀斯承认,地球的未来以及人类的生命安全和健康都令每位科学家非常担忧。特别是关于人造黑洞风险的争论,现在已经是一个非常具有争议的物理话题。特别是已经有科学家指出,欧洲核子研究中心的大型强子对撞机产生黑洞的风险足以吞噬地球,或者将产生一类名为“奇异微子”(Strangelet)的粒子,将地球变成一团沉寂、收缩的“奇异物质”。 还有很多政治家担心这种人造黑洞的技术被恐怖分子利用,成为继原子弹和氢弹之后人类最具有毁灭性的武器。但是,吉汀斯肯定的说:现代物理学无法在地球上制造出具有破坏性的黑洞。“欧洲建立大型强子对撞机(简称LHC),是为了揭开宇宙大爆炸之谜,而不是制造黑洞毁灭地球。” 人造黑洞-研究结论 吉汀斯和蒙加诺两位教授在进行深入研究后得出结论:利用粒子碰撞产生的黑洞是无害的。因为,所有的黑洞都要释放出宇宙射线,小的黑洞所释放的物质要远远多于其吸收的物质,因此,在它们吸收物质之前自己就早已瞬间蒸发了。事实上整个宇宙原本就是一个类似的粒子对撞机器,具有高能量的宇宙射线和粒子会经常碰撞在地球的大气表层、太阳或者是其它的白矮星和中子星的表面,每时每刻都在发生着这样的粒子碰撞。如果这些粒子碰撞会产生危险的话,天文学家很早就会发现这一现象并对其展开研究。 其实一直以来地球就沐浴在足够可以形成黑洞的宇宙射线和粒子对撞之下,但地球一直也都没有被摧毁。而且,几乎所有粒子加速器生成的黑洞都必须达到足够的速度才能逃脱地球的重力,即使一年生产出1000万个黑洞,也大约只能捕捉到其中的10个,让它们围绕加速器中心运转。而这些被捕捉到的黑洞又是如此的渺小,假设让它穿过一块相当于地球到月球距离厚度的铁块,它也不会撞倒任何东西。它们吞噬一个质子也需要大约100小时的时间。一个这样的黑洞吞噬100个质子大约需要花费一年的时间,因此,要吞噬1毫克地球物质就需要花费比宇宙年龄还要长的时间。 人造黑洞-转化能源 设计方案 中国科学家建造人工黑洞,可将太阳能转换为热能 2009年年初,印度乌尔都大学的伊维根·纳瑞马诺维和亚历山大·基尔迪谢维在媒体杂志上发表一项研究,提出如何建造可以吸收光线的桌面黑洞的理论。这种人造黑洞可模拟宇宙黑洞,其强烈的重力可弯曲周围的时空,导致周围任何物质或辐射遵循扭曲的时空,并螺旋向内被吸收。 纳瑞马诺维和基尔迪谢维认为,这种人造黑洞可使光线向该设备中心弯曲吸收。他们设计的人造黑洞是由包含着同轴环壳的中心柱构成的圆柱结构。能使光线弯曲向内的关键因素在于同轴环壳的介电常数,它可以影响电磁波的电成分,增大从外部至内部表面的光滑程度,这类似于接近黑洞的时空的弯曲度。当同轴环壳与中心柱相接触,同轴环的介电常数必须匹配中心柱,因此光线可以被吸收,而不是被反射。 付诸实践 2009年10月,中国南京市东南大学的科学家崔铁军和陈强将纳瑞马诺维和基尔迪谢维的理论应用为实践,建造了一个微波频率的“人造黑洞”。该设备采用一种“超级材料”构造成60个同轴环,据悉,超级材料曾被用于制造隐身斗篷。每个同轴环是以不同结构的电路板形式形成,同轴环之间彼此相连接,因此其介电常数非常平滑。外部的40个同轴环构成外壳,内部的20个同轴环构成吸收体。当入射的电磁波打击该设备时,电磁波将被诱导进入内部的同轴环,然后被吸收。在同轴环将把吸收的光线转变成为热量。” 不过目前东南大学实验室里的“黑洞”,还只是适用于某些微波频率,比如人们常用的通信频率,如GSM、CDMA和蓝牙等,吸引光波还有待进一步研究,因为光波的频率更短,需要设计的“人造黑洞”尺寸也要更小些。 未来应用 这个人造黑洞以相同的方法捕获光波并不容易,可见光波长比微波辐射的数量级要小许多。这就要求同轴环相应地需要建造得更小一些。中国科学家崔铁军表示期望这个光学黑洞能够在2009年底被广泛使用。像这样的人造黑洞可用于收集太阳能量,尤其是对于太阳反射镜过于漫射,难以在太阳能电池上聚集的太阳光线。光学人造黑洞则能够完全将这些光线吸收,并直接转化吸收在同轴环上的太阳能电池。如果这种设备能够有效地工作,那么以后将不再需要采用抛物线反射镜收集太阳光线。 人造黑洞-德国人造黑洞试验 2010年,德国马克斯普朗克核物理研究所和赫尔姆霍茨柏林中心的研究人员使用柏林同步加速器(BESSYⅡ)在实验室成功产生了黑洞周边的等离子体。通过该研究,之前只能在太空由人造卫星执行的天文物理实验,也可以在地面进行,诸多天文物理学难题有望得到解决。 黑洞的重力很大,会吸附一切物质。进入黑洞后,任何东西都不可能从黑洞的边界之内逃逸出来。随着被吸入的物体的温度不断升高,会产生核与电子分离的高温等离子体。 黑洞吸附物质会产生X射线,X射线反过来又会刺激其中的大量化学元素发射出具有独特线条(颜色)的X射线。分析这些线条可以帮助科学家了解更多有关黑洞附近等离子体的密度、速度和组成成分等信息。 在这个过程中,铁起了非常关键的作用。尽管铁在宇宙中的储量并不如更轻的氢和氦丰富,但是,它能够更好地吸收和重新发射出X射线,发射出的光子因此也比其他更轻的原子发射出的光子具有更高的能量、更短的波长(使得其具有不同的颜色)。 铁发射出的X射线在穿过黑洞周围的介质时也会被吸收。在这个所谓的光离化过程中,铁原子通常会经历几次电离,其包含的26个电子中有超过一半会被去除,最终产生带电离子,带电离子聚集成为等离子体。而现在,研究人员在实验室中重现了这个过程。 实验的核心是马克斯普朗克核物理研究所设计的电子束离子阱。在这个离子阱中,铁原子经由一束强烈的电子束加热,从而被离子化14次。实验过程如下:一团铁离子(仅仅几厘米长并且像头发丝一样薄)在磁场和电场的作用下被悬停在一个超高真空内,同步加速器发射出的X射线的光子能量被一台精确性超高的“单色仪”挑选出来,作为一束很薄但却集中的光束施加到铁离子上。 实验室测量到的光谱线与钱德拉X射线天文台和牛顿X射线多镜望远镜所观测的结果相匹配。也就是说,研究人员在地面实验室人为制造出了太空中的黑洞等离子体。 这种新奇的方法将带电离子的离子阱和同步加速器辐射源结合在一起,让人们可以更好地了解黑洞周围的等离子体或者活跃的星系核。研究人员希望,将EBIT分光检查镜和更清晰的第三代(2009年开始在德国汉堡运行的同步辐射源PETRAⅢ)、第四代(X射线自由电子激光XFEL)X射线源结合,将能够给该研究领域带来更多新鲜活力。
人造太阳的意思及读音
读音:
注音:
基本解释: 基本解释 所谓“人造太阳”,即先进超导托卡马克实验装置,也即国际热核聚变实验堆计划(ITER)建设工程,是当今世界迄今为止最大的热核聚变实验项目,旨在在地球上模拟太阳的核聚变,利用热核聚变为人类提供源源不断的清洁能源。核聚变能以氘氚为燃料,具有安全、洁净、资源无限3大优点,是最终解决我国乃至全人类能源问题的战略新能源。详细解释 简介 人造太阳是可控核聚变的俗称,因为太阳的原理就是核聚变反应。(核聚变反应主要借助氢同位素。核聚变不会产生核裂变所出现的长期和高水平的核辐射,不产生核废料,当然也不产生温室气体,基本不污染环境)人们认识热核聚变是从氢弹爆炸开始的。科学家们希望发明一种装置,可以有效控制“氢弹爆炸”的过程,让能量持续稳定的输出。科学家们把这类装置比喻为“人造太阳”。 “人造太阳”是指科学家利用太阳核反应原理,为人类制造一种能提供能源的机器——人工可控核聚变装置,科学家称它为“全超导托克马克试验装置”。(托卡马克是“磁线圈圆环室”的俄文缩写,又称环流器。这是一个由封闭磁场组成的“容器”,像一个中空的面包圈,可用来约束电离子的等离子体。)太阳的光和热,来源于氢的两个同胞兄弟——氘和氚(物理学叫氢的同位素)在聚变成一个氦原子的过程中释放出的能量。“人造太阳”就是模仿的这一过程。氢弹是人们最早制造出的“人造太阳”。但氢弹的聚变过程是不可控的,它瞬间释放出的巨大能量足以毁灭一切。而“全超导托克马克试验装置”却能控制这一过程。通过一种特殊的装置已经可以把氘氚的聚变燃料加热到四亿到五亿度的高温区,然后在这么高的温度下就发生了大量的聚变反应。目前在世界上最大的托克马克装置“欧洲联合环”上面已经获得了最大的聚变功率输出,到了16到17兆瓦。但是只能短暂地运行,也就是这个“磁笼”只能存在几秒、十几秒钟,聚变反应也是昙花一现! 背景 100年前,爱因斯坦预见了在原子核中蕴藏着巨大的能量。依据他提出的质能方程E=mc2,核聚变的原理看上去极其简单:两个轻核在一定条件下聚合成一个较重核,但反应后质量有一定亏损,将释放出巨大的能量。1939年,美国物理学家贝特证实,一个氘原子核和一个氚原子核碰撞,结合成一个氦原子核,并释放出一个中子和17.6兆电子伏特的能量。这个发现揭示了太阳“燃烧”的奥秘。 实际上,太阳上的聚变反应已经持续了50亿年。在宇宙中的其他恒星上,也几乎都在燃烧着氢的同位素———氘和氚。(氢原子最容易实现的聚变反应是其同位素氘与氚的聚变。氘和氚聚变后,2个原子核结合成1个氦原子核,并放出1个中子和17.6兆电子伏特能量。每1升海水中含30毫克氘,30毫克氘聚变产生的能量相当于300升汽油。) 而氘在自然界中几乎“取之不尽”。科学家初步估计,地球上的海水中蕴藏了大约40万亿吨氘。从1升海水里提取的氘,在完全的聚变反应中所释放的能量,相当于燃烧300升汽油。如果把自然界中的氘用于聚变反应,释放的能量足够人类使用100亿年。 在实验室中,聚变反应的优点被不断发现——它产生的能量是核裂变的7倍,反应产物是无放射性污染的氦。更完美的是,未来的聚变电站会始终处于次临界安全运行状态,一旦出现意外,反应会自动停止,不会发生像三哩岛和切尔诺贝利那样的核泄漏事故。 1952年美国试爆了第一颗氢弹,促使科学家考虑如何控制核聚变反应在瞬间爆发的毁灭性能量,“人造太阳”之梦由此而始。 此后,石油、煤炭等化石能源日益枯竭,能源危机和温室效应步步逼近,获取新型能源已经变得十分迫切。虽然风能、水能、太阳能等可再生能源不断地被开发利用,但很难想象,它们能够完全替代传统能源。 原理 在太阳的中心,温度高达1500万摄氏度,气压达到3000多亿个大气压,在这样的高温高压条件下,氢原子核聚变成氦原子核,并放出大量能量。几十亿年来,太阳犹如一个巨大的核聚变反应装置,无休止地向外辐射着能量。 核聚变能是两个较轻的原子核结合成一个较重的原子核时释放的能量,产生聚变的主要燃料之一是氢的同位素氘。氘广泛的分布在水中,每一升水中约含有30毫克氘,通过聚变反应产生的能量相当于300升汽油的热能。采集氘并使之与相关物质聚变产生能量,就是人造太阳的原理。 20世纪50年代初,苏联科学家塔姆和萨哈罗夫提出磁约束的概念。苏联库尔恰托夫原子能研究所的阿奇莫维奇按照这样的思路,不断进行研究和改进,于1954年建成了第一个磁约束装置。他将这一形如面包圈的环形容器命名为托卡马克(tokamak)。托卡马克是“磁线圈圆环室”的俄文缩写,又称环流器。这是一个由封闭磁场组成的“容器”,像一个中空的面包圈,可用来约束电离了的等离子体。 托卡马克中等离子体的束缚是靠纵场(环向场)线圈,产生环向磁场,约束等离子体,极向场控制等离子体的位置和形状,中心螺管也产生垂直场,形成环向高电压,激发等离子体,同时加热等离子体,也起到控制等离子体的作用。 几十年来,人们一直在研究和改进磁场的形态和性质,以达到长时间的等离子体的稳定约束;还要解决等离子体的加热方法和手段,以达到聚变所要求的温度;在此基础上,还要解决维持运转所耗费的能量大于输出能量的问题。每一次等离子体放电时间的延长,人们都为之兴奋;每一次温度的提高,人们都为之欢呼;每一次输出能量的提高,都意味着我们离聚变能的应用更近了一步。尽管取得了很大进步,但障碍还是没有克服。到目前为止,托卡马克装置都是脉冲式的,等离子体约束时间很短,大多以毫秒计算,个别可达到分钟级,还没有一台托卡马克装置实现长时间的稳态运行,而且在能量输出上也没有做到不赔本运转。 为了维持强大的约束磁场,电流的强度非常大,时间长了,线圈就要发热。从这个角度来说,常规托卡马克装置不可能长时间运转。为了解决这个问题,人们把最新的超导技术引入到托卡马克装置中,也许这是解决托卡马克稳态运转的有效手段之一。目前,法国、日本、俄罗斯和中国共有4个超导的托卡马克装置在运行,它们都只有纵向场线圈采用超导技术,属于部分超导。其中法国的超导托卡马克Tore-Supra体积较大,它是世界上第一个真正实现高参数准稳态运行的装置,在放电时间长达120秒的条件下,等离子体温度为2000万度,中心粒子密度每立方米1.5×1019个。中国和韩国正在建造全超导的托卡马克装置,目标是实现托卡马克更长时间的稳态运行。 50年来,全世界共建造了上百个托卡马克装置,在改善磁场约束和等离子体加热上下足了功夫。在上世纪70年代,人们对约束磁场研究有了重大进展,通过改变约束磁场的分布和位形,解决了等离子体粒子的侧向漂移问题。世界范围内掀起了托卡马克的研究热潮。美国、欧洲、日本、苏联建造了四个大型托卡马克,即美国1982年在普林斯顿大学建成的托卡马克聚变实验反应堆(TFTR),欧洲1983年6月在英国建成更大装置的欧洲联合环(JET),日本1985年建成的JT-60,苏联1982年建成超导磁体的T-15,它们后来在磁约束聚变研究中做出了决定性的贡献。特别是欧洲的JET已经实现了氘、氚的聚变反应。1991年11月,JET将含有14%的氚和86%的氘混合燃料加热到了摄氏3亿度,聚变能量约束时间达2秒。反应持续1分钟,产生了1018个聚变反应中子,聚变反应输出功率约1.8兆瓦。1997年9月22日创造了核聚变输出功率12.9兆瓦的新记录。这一输出功率已达到当时输入功率的60%。不久输出功率又提高到16.1兆瓦。在托卡马克上最高输出与输入功率比已达1.25。 研究进展 从上个世纪50年代初,美国和苏联分别开始秘密地研究可控的核聚变,因为核聚变反应堆不仅可以获取用之不绝的能源,还可以用作稳定的中子源,例如可用来生产核裂变原料。但理论研究和实验技术上遇到一个又一个难以逾越的障碍,不久独立进行研究的各国就认识到这件事并不容易,只有开展广泛的国际合作才是加速实现核聚变能利用的可行之路。随后逐渐相互公开研究资料和进展,开始了合作之路。即使在冷战时期,其他核技术都是相互保密的,惟独热核聚变技术是相互公开的。 1985年,美国总统里根和苏联总统戈尔巴乔夫,在一次首脑会议上倡议开展一个核聚变研究的国际合作计划,要求“在核聚变能方面进行最广泛的、切实可行的国际合作”。戈尔巴乔夫、里根和法国总统密特朗后来又进行了几次高层会晤,支持在国际原子能机构主持下,进行国际热核实验反应堆,即ITER的概念设计和辅助研究开发方面的合作。 1987年春,国际原子能机构总干事邀请欧共体、日本、美国和加拿大、苏联的代表在维也纳开会,讨论加强核聚变研究的国际合作问题,并达成协议,四方合作设计建造国际热核实验堆,并由此诞生了第一个国际热核实验堆的概念设计计划。计划将于2010年建成一个实验堆,预期产生热功率1500兆瓦、等离子体电流2400万安培,燃烧时间可达16分钟。 随后,由于苏联的解体,计划受到很大影响,1999年美国的退出使ITER计划雪上加霜。日本和欧共体国家于是成为支持国际磁约束聚变研究计划的主体力量。经过多年的努力,ITER工程设计修改方案也终于在2001年6月圆满完成。 根据计划,首座热核反应堆将于2006年开工,总造价为约40亿欧元。聚变功率至少达到500兆瓦。等离子体的最大半径6米,最小半径2米,等离子体电流1500万安培,约束时间至少维持400秒。未来发展计划包括一座原型聚变堆在2025年前投入运行,一座示范聚变堆在2040年前投入运行。 2003年2月18日,美国宣布重新加入这一大型国际计划,中国也于前一个月正式加入该项计划的前期谈判。19日,国际热核实验反应堆计划参与各方在俄罗斯圣彼得堡决定,将于2013年前在日本、西班牙、法国和加拿大四国中的一个国家中建成世界上第一座热核反应堆。 2003年12月20日在华盛顿召开的一次非常热闹的会议上出现了两军对垒的形势:欧盟、中国和俄罗斯主张把反应堆建在法国的卡达拉齐,而美国、南朝鲜和日本则主张建在日本的六所村。因为没有选择加拿大作为反应堆候选国,加拿大政府随后宣布,由于缺乏资金退出该项目。 ITER的相关会议确定,反应堆所在国出资48%,其他国家各出资10%。目前各项细节谈判正在紧锣密鼓地进行之中,反应堆建在哪里还没有最终确定。 尽管ITER计划采用了最先进的设计,综合了以往的经验和成果,比如采用全超导技术,但它的确还面临重重挑战。即使它能如期在2013年如期建成,这个10层楼高的庞大机器能否达到预期目标也还是个未知数。诸如探索新的加热方式与机制为实现聚变点火,改善等离子体的约束性能,反常输运与涨落现象研究等前沿课题,偏滤器的排灰、大破裂的防御、密度极限、长脉冲H-模的维持、中心区杂质积累等工程技术难关还有待于各国科技工作者群力攻关。即使对ITER的科学研究真的成功了,聚变发电站至少还要30~50年以后才能实现。 前景意义 1952年,当第一颗氢弹爆炸之后,人类制造核聚变反应成为现实,但那只是不可控制的瞬间爆炸。从那个时候开始,科学家们一直在寻找途径,把氢弹爆炸在某个试验装置上面加以控制地让它发生,然后源源不断地取出它的核聚变能。50多年的时间过去了,这个梦想一直没能实现。 根据科学家的分析,如果我们未来能建成一座1000兆瓦的核聚变电站,每年只需要从海水中提取304公斤的氘就可以产生1000兆瓦的电量,照此计算,地球上仅在海水中就含有的45万亿吨氘,足够人类使用上百亿年,比太阳的寿命还要长。实现可控制的核聚变反应,打造一个“人造太阳”,已成为当今世界挡不住的一大诱惑。因为,这可以一劳永逸地解决人类存在的能源短缺问题,岂不幸哉! 当今世界,人口爆炸性地增长,能源、资源危机步步逼近。这项前无古人的ITER计划,或许也是一个别无选择的计划,将为人类的生存和发展创造又一个“太阳”。虽然这个“太阳”离我们还有一段距离,有人估计需要50―100年,不过可以相信,“人造太阳”普照人间的这一天终将来临。它将为人类未来建造工业应用的聚变电站搭起一座桥梁。目前,在托卡马克装置上进行聚变反应已经获得不小的成功,但要实现稳态、长时间地运行还有很长的路要走,我们就是想通过全超导技术来解开这个“死结”,让它运行的时间更长,从实验逐步走向应用。 一旦“人造太阳”成功运行,带给世界的变化将是革命性的。各国之间再也不用为中东的石油而发生战争。没了石油、煤矿开采带来的污染,二氧化碳的温室效应、南极冰面的萎缩、海岸线的增高等等一系列现在人类头疼的问题都会消失。它将给人类带来无限清洁的能源,就像太阳给我们的一样。 评价及意义 EAST的成功建设得到国际聚变研究专家的高度评价。由29位国际聚变界权威人士组成的国际顾问委员会在评价意见中指出,“EAST是全世界聚变工程的非凡业绩,是全世界聚变能开发的杰出成就和重要里程碑”,“EAST是目前世界上唯一投入运行并拥有类似于即将建设的国际热核聚变实验堆(ITER)而采用全超导磁体的托卡马克装置。EAST的成功建设和运行为中国平等参加ITER这一重大国际合作奠定了基础”。 由国家发改委、中科院、科技部、国家档案局、国家环保总局、国家自然科学基金委的领导和相关院士及专家组成的34人验收委员会认为:EAST超导托卡马克核聚变实验装置项目实现了原定的建设目标,性能在同类装置中处于国际领先位置。这一具有我国自主知识产权的新一代全超导托卡马克核聚变实验装置率先在我国成功建成,整个实验系统运行稳定可靠,装置主机及其重要子系统均达到或超过设计指标,该装置已全面、优质完成,为我国核聚变事业的发展创造了良好的发展平台,也为我国全面参与国际合作项目奠定了坚实的基础。 国家发改委副主任张晓强说:“这是我国聚变开发史上一个不可缺少的重要步骤,也是我国科学家对世界科技发展的重要贡献。” 背景知识 核聚变反应 核聚变反应:核聚变反天那 应主要借助氢同位素。核聚变不会产生核裂变所出现的长期和高水平的核辐射,不产生核废料,当然也不产生温室气体,基本不污染环境 托卡马克装置 托卡马克装置:托卡马克是“磁线圈圆环室”的俄文缩写,又称环流器。这是一个由封闭磁场组成的“容器”,像一个中空的面包圈,可用来约束电离子的等离子体。 氘-氚聚变 氘-氚聚变:氢原子最容易实现的聚变反应是其同位素氘与氚的聚变。氘和氚聚变后,2个原子核结合成1个氦原子核,并放出1个中子和17.6兆电子伏特能量。每1升海水中含30毫克氘,30毫克氘聚变产生的能量相当于300升汽油。
火星人造物体是什么意思
读音:
注音:
基本解释: 基本解释 火星人造物体-概述 下面是火星表面部分人造物体的列表,不包括降落伞等小物体。 名称国籍着陆日期质量位置备注 火星2号苏联1971年1210千克南纬45°,西经302°失败 火星3号苏联1971年1210千克南纬45°,西经158°只有20秒信号 火星6号苏联1973年635千克南纬29.90°,西经19.42°失败 海盗1号美国1976年657千克北纬22.480°,西经47.967°第一个成功着陆器 海盗2号美国1976年657千克北纬48.269°,西经225.99° 火星探路者美国1997年360千克北纬19.33°,西经33.55°第一个成功火星车 火星气候轨道器美国1999年629千克未知设计错误 火星极地着陆器美国1999年500千克南纬76°,西经195°失败 贝格尔2号英国2003年69千克北纬10.6°,西经270°失败 勇气号美国2004年1063千克南纬14.5718°,东经175.4785°目前仍在工作 机遇号美国2004年1063千克南纬1.9483°,东经354.4742°目前仍在工作
以上就是慵吋小编为您整理人造丝的意思的全部内容,有关中小学辅导的课程请进入中小学辅导栏目查看。